If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+X^2=8180
We move all terms to the left:
X^2+X^2-(8180)=0
We add all the numbers together, and all the variables
2X^2-8180=0
a = 2; b = 0; c = -8180;
Δ = b2-4ac
Δ = 02-4·2·(-8180)
Δ = 65440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{65440}=\sqrt{16*4090}=\sqrt{16}*\sqrt{4090}=4\sqrt{4090}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{4090}}{2*2}=\frac{0-4\sqrt{4090}}{4} =-\frac{4\sqrt{4090}}{4} =-\sqrt{4090} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{4090}}{2*2}=\frac{0+4\sqrt{4090}}{4} =\frac{4\sqrt{4090}}{4} =\sqrt{4090} $
| 20=∣3y−11∣ | | X-y=-22 | | 6(2s+3)=36 | | x*12/26=277.04 | | 3p+⅕=2-p | | 6aa=12 | | P²-10p=15 | | ∠A=(5x-48)° | | 5x+4x-7x-5=1 | | 315000=3500x | | 41=|13-4y| | | 3(2x+1)+56=10 | | 70/3500=x/4500 | | 5c+2-4c=-29+14 | | 18+1/4x=-20 | | 5-3x+6x=11 | | 26÷8=r | | 9x=14=68 | | 13x+3=72 | | 343^(3x-2)=49^4-x | | 25^(3a+5)=1/125 | | –18q−2=–17q−20 | | 13=n/5+10 | | 3x+(2x4)2=15 | | 3x+(2x4)^2=15 | | x+x+40°=180 | | 0,6⋅(y-2)=2,4 | | -18.5=8+6(k-7.5( | | 5/4=2x/20 | | z2+5=19 | | 7(9c+6)=20.5+9.2c | | 32÷c=8 |